Dr. Kirankumar S. Mysore
Noble Research Institute, USA
Title: Identification of Novel sources of resistance against Asian soybean rust in Medicago truncatula
Biography
Biography: Dr. Kirankumar S. Mysore
Abstract
Retrotransposons, retrovirus-like elements which encode proteins required for their own replication and transposition, can be used for insertional mutagenesis. Tobacco retrotransposon, Tnt1, has been used to mutagenize and tag the whole genome of a model legume, Medicago truncatula. Tnt1 is very active and transpose into, on average, 25 different locations during M. truncatula tissue culture. Mutations induced by Tnt1 insertion are stable during seed to seed generation. We have generated over 20,000 independent Tnt1-containing lines encompassing more than 500,000 insertion events. Over 400,000 Tnt1 flanking sequence tags (FSTs) have been recovered and a database has been established. We have pooled genomic DNA from all the lines for customized reverse-genetic screening, and the frequency of insert identification in this pool for average-sized-gene is approximately 85% percent. The range and diversity of mutant phenotypes obtained to date suggest that M. truncatula offers a great opportunity to dissect symbiotic and developmental pathways for a comprehensive understanding of legume biology. A forward genetics approach using Tnt1 tagged M. truncatula lines has been established to identify genes that confer nonhost resistance to Asian Soybean Rust pathogen, Phakopsora pachyrhizi. Several M. truncatula Tnt1 mutants with altered response to P. pachyrhizi have been identified and being characterized. irg1 (inhibitor of rust germ-tube differentation1) mutant inhibited pre-infection structure differentiation of P. pachyrhizi and several other biotrophic pathogens. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1 that also controls dissected leaf morphology in M. truncatula. Characterization of other mutants will also be presented.